NUP133
Gene Ontology Biological Process
- chromatin silencing at silent mating-type cassette [IDA]
- double-strand break repair [IGI, IMP]
- mRNA export from nucleus in response to heat stress [IMP]
- maintenance of chromatin silencing at telomere [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- nuclear pore distribution [IMP]
- poly(A)+ mRNA export from nucleus [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- protein import into nucleus [IMP]
- tRNA export from nucleus [IMP]
- telomere tethering at nuclear periphery [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SLX9
Gene Ontology Biological Process
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast.
The yeast RAD27 gene encodes a functional homolog of the mammalian FEN1 protein, a structure-specific endo/exonuclease which plays an important role in DNA replication and repair. Previous genetic interaction studies, including a synthetic genetic array (SGA) analysis, showed that the survival of rad27Delta cells requires several DNA metabolic processes, in particular those mediated by all members of the Rad52-dependent recombinational ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SLX9 NUP133 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4818 | BioGRID | 382275 | |
NUP133 SLX9 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4818 | BioGRID | 395709 | |
SLX9 NUP133 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4716 | BioGRID | 2120819 | |
NUP133 SLX9 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7457 | BioGRID | 2146992 |
Curated By
- BioGRID