RTF1
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- global genome nucleotide-excision repair [IMP]
- mRNA 3'-end processing [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP]
- regulation of chromatin silencing at telomere [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA, IMP]
- regulation of histone H2B ubiquitination [IMP]
- regulation of histone H3-K4 methylation [IMP]
- regulation of histone H3-K79 methylation [IMP]
- regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- regulation of transcription from RNA polymerase II promoter [IGI]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- snoRNA 3'-end processing [IMP]
- snoRNA transcription from an RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
IKI3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex.
Histone-lysine methylation is linked to transcriptional regulation and the control of epigenetic inheritance. Lysine residues can be mono-, di-, or trimethylated, and it has been suggested that each methylation state of a given lysine may impart a unique biological function. In yeast, histone H3 lysine 4 (K4) is mono-, di-, and trimethylated by the Set1 histone methyltransferase. Previous studies show ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
IKI3 RTF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1807 | BioGRID | 401245 | |
RTF1 IKI3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1807 | BioGRID | 378586 | |
RTF1 IKI3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1235 | BioGRID | 2119220 | |
IKI3 RTF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1573 | BioGRID | 2155632 | |
IKI3 RTF1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 483347 |
Curated By
- BioGRID