BAIT
PAF1
L000002621, YBR279W
Component of the Paf1p complex involved in transcription elongation; binds to and modulates the activity of RNA polymerases I and II; required for expression of a subset of genes, including cell cycle-regulated genes; involved in SER3 repression by helping to maintain SRG1 transcription-dependent nucleosome occupancy; homolog of human PD2/hPAF1
GO Process (25)
GO Function (6)
GO Component (3)
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- chromatin organization involved in regulation of transcription [IMP]
- chromatin silencing at rDNA [IMP]
- global genome nucleotide-excision repair [IMP]
- mRNA 3'-end processing [IMP]
- negative regulation of DNA recombination [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of histone H3-K36 trimethylation [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- rRNA processing [IMP]
- regulation of chromatin silencing at telomere [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA]
- regulation of histone H2B ubiquitination [IMP]
- regulation of histone H3-K4 methylation [IMP]
- regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IMP]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- snoRNA 3'-end processing [IMP]
- snoRNA transcription from an RNA polymerase II promoter [IDA, IMP]
- transcription elongation from RNA polymerase I promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI, IMP]
- transcription from RNA polymerase I promoter [IGI, IMP]
Gene Ontology Molecular Function- RNA polymerase II C-terminal domain phosphoserine binding [IDA]
- RNA polymerase II core binding [IPI]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IPI]
- TFIIF-class binding transcription factor activity [IMP, IPI]
- chromatin binding [IDA]
- RNA polymerase II C-terminal domain phosphoserine binding [IDA]
- RNA polymerase II core binding [IPI]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IPI]
- TFIIF-class binding transcription factor activity [IMP, IPI]
- chromatin binding [IDA]
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
SPT4
transcription elongation factor SPT4, L000002030, YGR063C
Component of the universally conserved Spt4/5 complex (DSIF complex); the complex has multiple roles in concert with RNA polymerases I and II, including regulation of transcription elongation, RNA processing, quality control, and transcription-coupled DNA repair; Spt4p also localizes to kinetochores and heterochromatin and affects chromosome dynamics and silencing; required for transcription through lengthy trinucleotide repeats in ORFs or non-protein coding regions
GO Process (12)
GO Function (3)
GO Component (5)
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [IGI]
- chromatin organization [IMP]
- chromatin silencing [IMP]
- chromosome segregation [IMP]
- intracellular mRNA localization [IMP]
- mRNA splicing, via spliceosome [IMP]
- negative regulation of transcription elongation from RNA polymerase I promoter [IGI]
- positive regulation of transcription elongation from RNA polymerase I promoter [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- regulation of rRNA processing [IMP]
- regulation of transcription, DNA-templated [IMP]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex.
Histone-lysine methylation is linked to transcriptional regulation and the control of epigenetic inheritance. Lysine residues can be mono-, di-, or trimethylated, and it has been suggested that each methylation state of a given lysine may impart a unique biological function. In yeast, histone H3 lysine 4 (K4) is mono-, di-, and trimethylated by the Set1 histone methyltransferase. Previous studies show ... [more]
Curr. Biol. Aug. 23, 2005; 15(16);1487-93 [Pubmed: 16040246]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID