BAIT
SPT8
SAGA complex subunit SPT8, L000002034, YLR055C
Subunit of the SAGA transcriptional regulatory complex; not present in SAGA-like complex SLIK/SALSA; required for SAGA-mediated inhibition at some promoters
GO Process (4)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
THP1
BUD29, YOL072W
Nuclear pore-associated protein; component of TREX-2 complex (Sac3p-Thp1p-Sus1p-Cdc31p) involved in transcription elongation and mRNA export from the nucleus; involved in post-transcriptional tethering of active genes to the nuclear periphery and to non-nascent mRNP; contains a PAM domain implicated in protein-protein binding
GO Process (7)
GO Function (2)
GO Component (4)
Gene Ontology Biological Process
- cellular bud site selection [IMP]
- mRNA 3'-end processing [IMP]
- mRNA export from nucleus [IMP]
- nuclear retention of pre-mRNA at the site of transcription [IMP]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- transcription elongation from RNA polymerase II promoter [IMP]
- transcription-coupled nucleotide-excision repair [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex.
The SAGA complex is a multisubunit protein complex involved in transcriptional regulation in Saccharomyces cerevisiae. SAGA combines proteins involved in interactions with DNA-bound activators and TATA-binding protein (TBP), as well as enzymes for histone acetylation (Gcn5) and histone deubiquitylation (Ubp8). We recently showed that H2B ubiquitylation and Ubp8-mediated deubiquitylation are both required for transcriptional activation. For this study, we investigated ... [more]
Mol. Cell. Biol. Feb. 01, 2005; 25(3);1162-72 [Pubmed: 15657441]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Curated By
- BioGRID