BAIT

SPT3

transcriptional regulator SPT3, L000002029, YDR392W
Subunit of the SAGA and SAGA-like transcriptional regulatory complexes; interacts with Spt15p to activate transcription of some RNA polymerase II-dependent genes, also functions to inhibit transcription at some promoters; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

RPN10

MCB1, SUN1, proteasome regulatory particle base subunit RPN10, L000003108, YHR200W
Non-ATPase base subunit of the 19S RP of the 26S proteasome; N-terminus plays a role in maintaining the structural integrity of the regulatory particle (RP); binds selectively to polyubiquitin chains; homolog of the mammalian S5a protein
GO Process (1)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex.

Ingvarsdottir K, Krogan NJ, Emre NC, Wyce A, Thompson NJ, Emili A, Hughes TR, Greenblatt JF, Berger SL

The SAGA complex is a multisubunit protein complex involved in transcriptional regulation in Saccharomyces cerevisiae. SAGA combines proteins involved in interactions with DNA-bound activators and TATA-binding protein (TBP), as well as enzymes for histone acetylation (Gcn5) and histone deubiquitylation (Ubp8). We recently showed that H2B ubiquitylation and Ubp8-mediated deubiquitylation are both required for transcriptional activation. For this study, we investigated ... [more]

Mol. Cell. Biol. Feb. 01, 2005; 25(3);1162-72 [Pubmed: 15657441]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID