TFC3
Gene Ontology Biological Process
Gene Ontology Molecular Function- DNA binding, bending [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- DNA binding, bending [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
Gene Ontology Cellular Component
TFC4
Gene Ontology Biological Process
Gene Ontology Molecular Function- DNA binding, bending [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- DNA binding, bending [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 1 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding [IDA]
- RNA polymerase III type 2 promoter sequence-specific DNA binding TFIIIB recruiting transcription factor activity [IDA]
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.
Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TFC3 TFC4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 5 | BioGRID | 3605458 | |
TFC3 TFC4 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
TFC3 TFC4 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 155768 | |
TFC4 TFC3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3429 | BioGRID | 1934425 | |
TFC3 TFC4 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3483 | BioGRID | 1918691 | |
TFC3 TFC4 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 438026 |
Curated By
- BioGRID