LRP1
Gene Ontology Biological Process
- U4 snRNA 3'-end processing [IMP]
- U5 snRNA 3'-end processing [IMP]
- exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- nuclear mRNA surveillance [IMP]
- nuclear polyadenylation-dependent CUT catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent rRNA catabolic process [IGI, IMP]
- nuclear retention of pre-mRNA at the site of transcription [IGI]
- polyadenylation-dependent snoRNA 3'-end processing [IMP]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- regulation of exoribonuclease activity [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CSL4
Gene Ontology Biological Process
- exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- ncRNA 3'-end processing [IC]
- nonfunctional rRNA decay [IC]
- nuclear polyadenylation-dependent mRNA catabolic process [IC]
- nuclear polyadenylation-dependent rRNA catabolic process [IMP]
- nuclear polyadenylation-dependent tRNA catabolic process [IDA]
- nuclear-transcribed mRNA catabolic process, 3'-5' exonucleolytic nonsense-mediated decay [IC]
- nuclear-transcribed mRNA catabolic process, exonucleolytic, 3'-5' [IGI, IMP]
- nuclear-transcribed mRNA catabolic process, non-stop decay [IMP]
- polyadenylation-dependent snoRNA 3'-end processing [IC]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.
Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CSL4 LRP1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
LRP1 CSL4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
CSL4 LRP1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 6 | BioGRID | 3594608 | |
LRP1 CSL4 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
CSL4 LRP1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1869 | BioGRID | 2011584 | |
CSL4 LRP1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -2.7765 | BioGRID | 311269 |
Curated By
- BioGRID