DIS3
Gene Ontology Biological Process
- exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- ncRNA 3'-end processing [IMP]
- nonfunctional rRNA decay [IMP]
- nuclear mRNA surveillance [IMP]
- nuclear polyadenylation-dependent CUT catabolic process [IMP]
- nuclear polyadenylation-dependent mRNA catabolic process [IC]
- nuclear polyadenylation-dependent rRNA catabolic process [IMP]
- nuclear polyadenylation-dependent tRNA catabolic process [IDA, IGI, IMP]
- nuclear-transcribed mRNA catabolic process, 3'-5' exonucleolytic nonsense-mediated decay [IC]
- nuclear-transcribed mRNA catabolic process, non-stop decay [IC]
- polyadenylation-dependent snoRNA 3'-end processing [IC]
- rRNA catabolic process [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RRP6
Gene Ontology Biological Process
- U1 snRNA 3'-end processing [IGI, IMP]
- U4 snRNA 3'-end processing [IGI, IMP]
- U5 snRNA 3'-end processing [IGI, IMP]
- exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- histone mRNA catabolic process [IMP]
- nuclear polyadenylation-dependent CUT catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent antisense transcript catabolic process [IMP]
- nuclear polyadenylation-dependent mRNA catabolic process [IMP]
- nuclear polyadenylation-dependent rRNA catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent snRNA catabolic process [IMP]
- nuclear polyadenylation-dependent snoRNA catabolic process [IMP]
- nuclear polyadenylation-dependent tRNA catabolic process [IDA, IGI]
- nuclear retention of pre-mRNA at the site of transcription [IGI]
- nuclear retention of pre-mRNA with aberrant 3'-ends at the site of transcription [IGI]
- polyadenylation-dependent snoRNA 3'-end processing [IMP]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
Gene Ontology Molecular Function
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Proteome survey reveals modularity of the yeast cell machinery.
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RRP6 DIS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
DIS3 RRP6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
RRP6 DIS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
RRP6 DIS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low/High | - | BioGRID | - | |
DIS3 RRP6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
RRP6 DIS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
DIS3 RRP6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
DIS3 RRP6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 7 | BioGRID | 3594513 | |
DIS3 RRP6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
RRP6 DIS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
RRP6 DIS3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
DIS3 RRP6 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
DIS3 RRP6 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
RRP6 DIS3 | Co-purification Co-purification An interaction is inferred from the identification of two or more protein subunits in a purified protein complex, as obtained by classical biochemical fractionation or affinity purification and one or more additional fractionation steps. | Low | - | BioGRID | - | |
RRP6 DIS3 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 213372 | |
RRP6 DIS3 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 320466 | |
RRP6 DIS3 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 1112584 | |
RRP6 DIS3 | Reconstituted Complex Reconstituted Complex An interaction is detected between purified proteins in vitro. | Low | - | BioGRID | - | |
DIS3 RRP6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2396558 | |
DIS3 RRP6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 1105114 | |
RRP6 DIS3 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 339865 | |
DIS3 RRP6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 1238920 | |
DIS3 RRP6 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 2197166 |
Curated By
- BioGRID