BAIT

PPH3

phosphoprotein phosphatase PP4 catalytic subunit PPH3, L000001471, YDR075W
Catalytic subunit of protein phosphatase PP4 complex; Pph3p and Psy2p form active complex, Psy4p may provide substrate specificity; regulates recovery from the DNA damage checkpoint, the gene conversion- and single-strand annealing-mediated pathways of meiotic double-strand break repair and efficient Non-Homologous End-Joining (NHEJ) pathway; involved in activation of Gln3p to alleviate nitrogen catabolite repression; Pph3p and Psy2p localize to foci on meiotic chromosomes
Saccharomyces cerevisiae (S288c)
PREY

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery.

Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC, Onishi M, Datta N, Galicia S, Emili A, Lieberman J, Shen X, Buratowski S, Haber JE, Durocher D, Greenblatt JF, Krogan NJ

One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the ... [more]

Nature Jan. 26, 2006; 439(7075);497-501 [Pubmed: 16299494]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MRE11 PPH3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1202BioGRID
405883
MRE11 PPH3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1202BioGRID
2164881
PPH3 MRE11
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
927731
PPH3 MRE11
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
927794

Curated By

  • BioGRID