BAIT

RVS167

amphiphysin, L000001789, YDR388W
Actin-associated protein with roles in endocytosis and exocytosis; interacts with Rvs161p to regulate actin cytoskeleton, endocytosis, and viability following starvation or osmotic stress; recruited to bud tips by Gyl1p and Gyp5p during polarized growth; homolog of mammalian amphiphysin
GO Process (4)
GO Function (2)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

GIM5

PFD5, L000004370, YML094W
Subunit of the heterohexameric cochaperone prefoldin complex; prefoldin binds specifically to cytosolic chaperonin and transfers target proteins to it; prefoldin complex also localizes to chromatin of actively transcribed genes in the nucleus and facilitates transcriptional elongation
GO Process (2)
GO Function (1)
GO Component (2)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo.

Friesen H, Humphries C, Ho Y, Schub O, Colwill K, Andrews B

We have used comprehensive synthetic lethal screens and biochemical assays to examine the biological role of the yeast amphiphysin homologues Rvs161p and Rvs167p, two proteins that play a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. We found that unlike some forms of amphiphysin, Rvs161p-Rvs167p acts as an obligate heterodimer during vegetative growth and neither Rvs161p nor Rvs167p ... [more]

Mol. Biol. Cell Mar. 01, 2006; 17(3);1306-21 [Pubmed: 16394103]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • High Throughput: Synthetic Genetic Array (SGA) analysis
  • Low Throughput: Confirmed by tetrad analysis.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GIM5 RVS167
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1416BioGRID
2159231
GIM5 RVS167
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.0268BioGRID
580508
RVS167 GIM5
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
112931

Curated By

  • BioGRID