BAIT

CEP3

CBF3, CSL1, CBF3B, L000000312, L000000222, YMR168C
Essential kinetochore protein; component of the CBF3 complex that binds the CDEIII region of the centromere; contains an N-terminal Zn2Cys6 type zinc finger domain, a C-terminal acidic domain, and a putative coiled coil dimerization domain
GO Process (2)
GO Function (3)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

RTT103

YDR289C
Protein involved in transcription termination by RNA polymerase II; interacts with exonuclease Rat1p and Rai1p; has an RPR domain (carboxy-terminal domain interacting domain); also involved in regulation of Ty1 transposition
GO Process (3)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation.

Measday V, Baetz K, Guzzo J, Yuen K, Kwok T, Sheikh B, Ding H, Ueta R, Hoac T, Cheng B, Pot I, Tong A, Yamaguchi-Iwai Y, Boone C, Hieter P, Andrews B

Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified ... [more]

Proc. Natl. Acad. Sci. U.S.A. Sep. 27, 2005; 102(39);13956-61 [Pubmed: 16172405]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTT103 CEP3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1786BioGRID
2035591

Curated By

  • BioGRID