BAIT

CHL4

CTF17, MCM17, L000000321, YDR254W
Outer kinetochore protein required for chromosome stability; involved in new kinetochore assembly and sister chromatid cohesion; forms a stable complex with Iml3p; peripheral component of the Ctf19 kinetochore complex that interacts with Ctf19p, Ctf3p, and Mif2p; required for the spindle assembly checkpoint; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-N and fission yeast mis15
Saccharomyces cerevisiae (S288c)
PREY

YKE2

GIM1, PFD6, L000002791, YLR200W
Subunit of the heterohexameric Gim/prefoldin protein complex; involved in the folding of alpha-tubulin, beta-tubulin, and actin; prefoldin complex also localizes to chromatin of actively transcribed genes in the nucleus and facilitates transcriptional elongation
GO Process (3)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation.

Measday V, Baetz K, Guzzo J, Yuen K, Kwok T, Sheikh B, Ding H, Ueta R, Hoac T, Cheng B, Pot I, Tong A, Yamaguchi-Iwai Y, Boone C, Hieter P, Andrews B

Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified ... [more]

Proc. Natl. Acad. Sci. U.S.A. Sep. 27, 2005; 102(39);13956-61 [Pubmed: 16172405]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
YKE2 CHL4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.2038BioGRID
216333
CHL4 YKE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1471BioGRID
368600
YKE2 CHL4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1471BioGRID
398565
CHL4 YKE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2952BioGRID
2098290
CHL4 YKE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3091BioGRID
2429297
CHL4 YKE2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492443
YKE2 CHL4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111114

Curated By

  • BioGRID