BAIT

IML3

MCM19, L000004778, YBR107C
Outer kinetochore protein and component of the Ctf19 complex; involved in the establishment of pericentromeric cohesion during mitosis; prevents non-disjunction of sister chromatids during meiosis II; forms a stable complex with Chl4p; required for localization of Sgo1p to pericentric sites during meiosis I; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-L and fission yeast fta1
Saccharomyces cerevisiae (S288c)
PREY

MAD2

spindle checkpoint protein MAD2, L000000975, YJL030W
Component of the spindle-assembly checkpoint complex; delays onset of anaphase in cells with defects in mitotic spindle assembly; forms a complex with Mad1p; regulates APC/C activity during prometaphase and metaphase of meiosis I; gene dosage imbalance between MAD1 and MAD2 leads to chromosome instability
GO Process (3)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation.

Measday V, Baetz K, Guzzo J, Yuen K, Kwok T, Sheikh B, Ding H, Ueta R, Hoac T, Cheng B, Pot I, Tong A, Yamaguchi-Iwai Y, Boone C, Hieter P, Andrews B

Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified ... [more]

Proc. Natl. Acad. Sci. U.S.A. Sep. 27, 2005; 102(39);13956-61 [Pubmed: 16172405]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MAD2 IML3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.7705BioGRID
223528
MAD2 IML3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1706BioGRID
2134824
MAD2 IML3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1831BioGRID
2438147
MAD2 IML3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
164734
MAD2 IML3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
450991
MAD2 IML3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167496

Curated By

  • BioGRID