BAIT

KAR9

L000002932, YPL269W
Karyogamy protein; required for correct positioning of the mitotic spindle and for orienting cytoplasmic microtubules; localizes at the shmoo tip in mating cells and at the tip of the growing bud in small-budded cells through anaphase
GO Process (3)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

LDB18

YLL049W
Component of the dynactin complex; dynactin is required for dynein activity; null mutant exhibits defects in nuclear migration and spindle orientation and has reduced affinity for alcian blue dye; has homology to mammalian dynactin subunit p24
GO Process (1)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast.

Grava S, Schaerer F, Faty M, Philippsen P, Barral Y

The orientation of the mitotic spindle plays a key role in determining whether a polarized cell will divide symmetrically or asymmetrically. In most cell types, cytoplasmic dynein plays a critical role in spindle orientation. However, how dynein directs opposite spindle poles toward distinct and predetermined cell ends is poorly understood. Here, we show that dynein distributes preferentially to the spindle ... [more]

Dev. Cell Apr. 01, 2006; 10(4);425-39 [Pubmed: 16580990]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
KAR9 LDB18
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4457BioGRID
418444
LDB18 KAR9
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4457BioGRID
396174
LDB18 KAR9
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.47BioGRID
2148659
KAR9 LDB18
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6206BioGRID
2193897
LDB18 KAR9
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.8291BioGRID
2431672
LDB18 KAR9
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
265927
KAR9 LDB18
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110359

Curated By

  • BioGRID