BAIT

PMT4

L000002623, YJR143C
Protein O-mannosyltransferase; transfers mannose residues from dolichyl phosphate-D-mannose to protein serine/threonine residues; appears to form homodimers in vivo and does not complex with other Pmt proteins; target for new antifungals
Saccharomyces cerevisiae (S288c)
PREY

PMT3

dolichyl-phosphate-mannose-protein mannosyltransferase PMT3, L000002622, YOR321W
Protein O-mannosyltransferase; transfers mannose residues from dolichyl phosphate-D-mannose to protein serine/threonine residues; acts in a complex with Pmt5p, can instead interact with Pmt1p in some conditions; antifungal drug target; PMT3 has a paralog, PMT2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital.

Gentzsch M, Tanner W

The transfer of mannose to seryl and threonyl residues of secretory proteins is catalyzed by a family of protein mannosyltransferases coded for by seven genes (PMT1-7). Mannose dolichylphosphate is the sugar donor of the reaction, which is localized at the endoplasmic reticulum. By gene disruption and crosses all single, double and triple mutants of genes PMT1-4 were constructed. Two of ... [more]

EMBO J. Nov. 01, 1996; 15(21);5752-9 [Pubmed: 8918452]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • pmtlpmt2pmt4 and pmt2pmt3pmt4 triple mutants are lethal

Curated By

  • BioGRID