BAIT

STE50

L000002125, YCL032W
Adaptor protein for various signaling pathways; involved in mating response, invasive/filamentous growth, osmotolerance; acts as an adaptor that links G protein-associated Cdc42p-Ste20p complex to the effector Ste11p to modulate signal transduction
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.

Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H

The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we isolated both ... [more]

EMBO J. Jul. 12, 2006; 25(13);3033-44 [Pubmed: 16778768]

Throughput

  • Low Throughput

Ontology Terms

  • hyperosmotic stress resistance (APO:0000204)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
STE50 CDC42
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
CDC42 STE50
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1617BioGRID
2001237

Curated By

  • BioGRID