BAIT

DIA2

YOR29-31, DNA-binding SCF ubiquitin ligase subunit DIA2, YOR080W
Origin-binding F-box protein; forms SCF ubiquitin ligase complex with Skp1p and Cdc53p; functions in ubiquitylation of silent chromatin structural protein Sir4p; required to target Cdc6p for destruction during G1 phase; required for deactivation of Rad53 checkpoint kinase, completion of DNA replication during recovery from DNA damage, assembly of RSC complex, RSC-mediated transcription regulation, and nucleosome positioning; involved in invasive and pseudohyphal growth
Saccharomyces cerevisiae (S288c)
PREY

RTF1

CSL3, L000001782, YGL244W
Subunit of RNAPII-associated chromatin remodeling Paf1 complex; regulates gene expression by directing cotranscriptional histone modification, influences transcription and chromatin structure through several independent functional domains; directly or indirectly regulates DNA-binding properties of Spt15p and relative activities of different TATA elements; involved in transcription elongation as demonstrated by the G-less-based run-on (GLRO) assay
GO Process (19)
GO Function (3)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.

Blake D, Luke B, Kanellis P, Jorgensen P, Goh T, Penfold S, Breitkreutz BJ, Durocher D, Peter M, Tyers M

The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin-ligase complex. Systematic analysis of ... [more]

Genetics Dec. 01, 2006; 174(4);1709-27 [Pubmed: 16751663]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DIA2 RTF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.145BioGRID
415378
RTF1 DIA2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.145BioGRID
378609
RTF1 DIA2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1429BioGRID
2119236

Curated By

  • BioGRID