DEP1
Gene Ontology Biological Process
- histone deacetylation [IMP]
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IDA, IGI, IMP]
- negative regulation of inositol biosynthetic process by negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of phosphatidylcholine biosynthetic process by negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of phosphatidylserine biosynthetic process by negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of inositol biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylcholine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphatidylserine biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to heat stress [IMP]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Cellular Component
MID2
Gene Ontology Biological Process
- UFP-specific transcription factor mRNA processing involved in endoplasmic reticulum unfolded protein response [IMP]
- cell morphogenesis involved in conjugation [IGI, IMP]
- fungal-type cell wall organization [IGI, IMP]
- peroxisome degradation [IMP]
- response to acidic pH [IMP]
- response to osmotic stress [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A global genetic interaction network maps a wiring diagram of cellular function.
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]
Quantitative Score
- -0.1278 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
- alleles: dep1 - mid2 [SGA score = -0.1278, P-value = 1.307E-6]
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MID2 DEP1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1704 | BioGRID | 400594 | |
DEP1 MID2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1704 | BioGRID | 355029 | |
MID2 DEP1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2116 | BioGRID | 2154329 |
Curated By
- BioGRID