BAIT

HMO1

HSM2, L000003234, YDR174W
Chromatin associated high mobility group (HMG) family member; involved in compacting, bending, bridging and looping DNA; rDNA-binding component that regulates transcription from RNA polymerase I promoters; regulates start site selection of ribosomal protein genes via RNA polymerase II promoters; role in genome maintenance; associates with a 5'-3' DNA helicase and Fpr1p, a prolyl isomerase; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

RPL16A

RPL13, ribosomal 60S subunit protein L16A, L13, rp22, YL15, L21A, L16A, L000001709, YIL133C
Ribosomal 60S subunit protein L16A; N-terminally acetylated, binds 5.8 S rRNA; transcriptionally regulated by Rap1p; homologous to mammalian ribosomal protein L13A and bacterial L13; RPL16A has a paralog, RPL16B, that arose from the whole genome duplication; protein abundance increases in response to DNA replication stress
GO Process (1)
GO Function (2)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A global genetic interaction network maps a wiring diagram of cellular function.

Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]

Science Sep. 23, 2016; 353(6306); [Pubmed: 27708008]

Quantitative Score

  • -0.2065 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
  • alleles: hmo1 - rpl16a [SGA score = -0.2065, P-value = 2.681E-6]

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HMO1 RPL16A
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High6BioGRID
3600477
HMO1 RPL16A
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2958BioGRID
367665
RPL16A HMO1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2958BioGRID
387236
HMO1 RPL16A
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
256780
HMO1 RPL16A
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
657548

Curated By

  • BioGRID