BAIT

PKR1

YMR123W
V-ATPase assembly factor; functions with other V-ATPase assembly factors in the ER to efficiently assemble the V-ATPase membrane sector (V0); protein abundance increases in response to DNA replication stress
GO Process (1)
GO Function (0)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

DRS2

FUN38, SWA3, aminophospholipid-translocating P4-type ATPase DRS2, L000000526, YAL026C
Trans-golgi network aminophospholipid translocase (flippase); maintains membrane lipid asymmetry in post-Golgi secretory vesicles; contributes to clathrin-coated vesicle formation, endocytosis, protein trafficking between the Golgi and endosomal system and the cellular response to mating pheromone; autoinhibited by its C-terminal tail; localizes to the trans-Golgi network; mutations in human homolog ATP8B1 result in liver disease
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile.

Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ

We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes ... [more]

Cell Nov. 04, 2005; 123(3);507-19 [Pubmed: 16269340]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PKR1 DRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3686BioGRID
2162875
PKR1 DRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.5067BioGRID
578111
DRS2 PKR1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-5.0531BioGRID
207665

Curated By

  • BioGRID