BAIT

PAC11

dynein intermediate chain, L000001330, YDR488C
Dynein intermediate chain, microtubule motor protein; required for intracellular transport and cell division; acts in cytoplasmic dynein pathway; forms complex with dynein light chain Dyn2p that promotes Dyn1p homodimerization and potentiates motor processivity; Dyn2p-Pac11p complex is also important for interaction of dynein motor complex with dynactin complex; forms cortical cytoplasmic microtubule capture site with Num1p; essential in the absence of CIN8
Saccharomyces cerevisiae (S288c)
PREY

PAT1

MRT1, L000001183, L000003214, YCR077C
Deadenylation-dependent mRNA-decapping factor; also required for faithful chromosome transmission, maintenance of rDNA locus stability, and protection of mRNA 3'-UTRs from trimming; associated with topoisomerase II; binds to mRNAs under glucose starvation, most often in the 3' UTR; functionally linked to Pab1p; forms cytoplasmic foci upon DNA replication stress; phosphorylation by PKA inhibits P body foci formation
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A global genetic interaction network maps a wiring diagram of cellular function.

Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]

Science Sep. 23, 2016; 353(6306); [Pubmed: 27708008]

Quantitative Score

  • -0.2761 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
  • alleles: pac11 - pat1 [SGA score = -0.2761, P-value = 1.375E-22]

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PAC11 PAT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.8142BioGRID
215850
PAT1 PAC11
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2056BioGRID
361763
PAC11 PAT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2056BioGRID
371241

Curated By

  • BioGRID