BAIT

SEY1

dynamin-like GTPase SEY1, YOR165W
Dynamin-like GTPase that mediates homotypic ER fusion; has a role in ER morphology; interacts physically and genetically with Yop1p and Rtn1p; functional ortholog of the human atlastin ATL1, defects in which cause a form of the human disease hereditary spastic paraplegia; homolog of Arabidopsis RHD3
Saccharomyces cerevisiae (S288c)
PREY

GET2

HUR2, RMD7, YER083C
Subunit of the GET complex; involved in insertion of proteins into the ER membrane; required for the retrieval of HDEL proteins from the Golgi to the ER in an ERD2 dependent fashion and for meiotic nuclear division
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile.

Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ

We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes ... [more]

Cell Nov. 04, 2005; 123(3);507-19 [Pubmed: 16269340]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEY1 GET2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1026BioGRID
2427326
SEY1 GET2
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High3.7923BioGRID
581198
GET2 SEY1
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High2.7695BioGRID
210795

Curated By

  • BioGRID