BAIT

RFS1

YBR052C
Protein of unknown function; member of a flavodoxin-like fold protein family that includes Pst2p and Ycp4p; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm in a punctate pattern; RFS1 has a paralog, PST2, that arose from the whole genome duplication
GO Process (0)
GO Function (0)
GO Component (2)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

SEC18

ANU4, AAA family ATPase SEC18, L000001842, YBR080C
AAA ATPase and SNARE disassembly chaperone; required for vesicular transport between ER and Golgi, the 'priming' step in homotypic vacuole fusion, autophagy, and protein secretion; releases Sec17p from SNAP complexes; has similarity to mammalian N-ethylmaleimide-sensitive factor (NSF)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile.

Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ

We present a strategy for generating and analyzing comprehensive genetic-interaction maps, termed E-MAPs (epistatic miniarray profiles), comprising quantitative measures of aggravating or alleviating interactions between gene pairs. Crucial to the interpretation of E-MAPs is their high-density nature made possible by focusing on logically connected gene subsets and including essential genes. Described here is the analysis of an E-MAP of genes ... [more]

Cell Nov. 04, 2005; 123(3);507-19 [Pubmed: 16269340]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC18 RFS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.844BioGRID
211187

Curated By

  • BioGRID