BAIT

CDC73

L000002792, YLR418C
Component of the Paf1p complex; binds to and modulates the activity of RNA polymerases I and II; required for expression of certain genes, modification of some histones, and telomere maintenance; involved in transcription elongation as demonstrated by the G-less-based run-on (GLRO) assay; protein abundance increases in response to DNA replication stress; human homologue, parafibromin, is a tumour suppressor linked to breast, renal and gastric cancers
Saccharomyces cerevisiae (S288c)
PREY

SPT2

EXA1, SIN1, L000002028, YER161C
Protein involved in negative regulation of transcription; required for RNA polyadenylation; exhibits regulated interactions with both histones and SWI-SNF components; relocalizes to the cytosol in response to hypoxia; similar to mammalian HMG1 proteins
GO Process (4)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.

Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ

Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that ... [more]

Nature Apr. 12, 2007; 446(7137);806-10 [Pubmed: 17314980]

Quantitative Score

  • -15.371281 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CDC73 SPT2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1603BioGRID
401572
SPT2 CDC73
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1603BioGRID
376744
CDC73 SPT2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
517020
SPT2 CDC73
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
202688
CDC73 SPT2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
109832

Curated By

  • BioGRID