XRS2
Gene Ontology Biological Process
- base-excision repair [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- sporulation resulting in formation of a cellular spore [IMP]
- telomere maintenance [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RFC5
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.
Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that ... [more]
Quantitative Score
- -7.173401 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RFC5 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3644 | BioGRID | 357956 | |
RFC5 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3195 | BioGRID | 1960547 | |
XRS2 RFC5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2031 | BioGRID | 2036629 |
Curated By
- BioGRID