BAIT

YAP1

PAR1, SNQ3, DNA-binding transcription factor YAP1, L000001364, YML007W
Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; activated by H2O2 through the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; Yap1p is degraded in the nucleus after the oxidative stress has passed; mediates resistance to cadmium; relative distribution to the nucleus increases upon DNA replication stress; YAP1 has a paralog, CAD1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

MMS1

RTT108, SLM6, L000003933, YPR164W
Subunit of E3 ubiquitin ligase complex involved in replication repair; stabilizes protein components of the replication fork such as the fork-pausing complex and leading strand polymerase, preventing fork collapse and promoting efficient recovery during replication stress; regulates Ty1 transposition; involved with Rtt101p in nonfunctional rRNA decay
GO Process (4)
GO Function (0)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A global genetic interaction network maps a wiring diagram of cellular function.

Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to ... [more]

Science Sep. 23, 2016; 353(6306); [Pubmed: 27708008]

Quantitative Score

  • -0.2002 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • Genetic interactions were considered significant if they had a p-value < 0.05 and an SGA score > 0.16 for positive interactions and SGA score < -0.12 for negative interactions.
  • alleles: yap1 - mms1 [SGA score = -0.2002, P-value = 1.066E-5]

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
YAP1 MMS1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.227BioGRID
403634
MMS1 YAP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.227BioGRID
422387
MMS1 YAP1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453252

Curated By

  • BioGRID