RFA2
Gene Ontology Biological Process
- DNA repair [IMP]
- DNA replication [IMP]
- DNA topological change [IDA]
- DNA unwinding involved in DNA replication [IDA]
- double-strand break repair via homologous recombination [IGI]
- establishment of protein localization [IMP]
- heteroduplex formation [IDA]
- mitotic recombination [IPI]
- nucleotide-excision repair [IDA, IMP]
- protein ubiquitination [IPI]
- reciprocal meiotic recombination [IPI]
- telomere maintenance via recombination [IPI]
- telomere maintenance via telomerase [IMP]
- telomere maintenance via telomere lengthening [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CHD1
Gene Ontology Biological Process
- ATP-dependent chromatin remodeling [IDA]
- chromatin organization involved in regulation of transcription [IGI, IMP]
- histone H2B conserved C-terminal lysine ubiquitination [IMP]
- negative regulation of DNA-dependent DNA replication [IGI]
- negative regulation of histone H3-K14 acetylation [IMP]
- negative regulation of histone H3-K9 acetylation [IMP]
- negative regulation of histone exchange [IMP]
- nucleosome mobilization [IDA]
- nucleosome positioning [IDA, IGI]
- regulation of chromatin organization [IMP]
- regulation of transcriptional start site selection at RNA polymerase II promoter [IGI]
- termination of RNA polymerase I transcription [IGI]
- termination of RNA polymerase II transcription [IGI, IMP]
- transcription elongation from RNA polymerase II promoter [IGI, IPI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.
Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that ... [more]
Quantitative Score
- -4.884183 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RFA2 CHD1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2577 | BioGRID | 2012836 |
Curated By
- BioGRID