BAIT

TOM1

E3 ubiquitin-protein ligase TOM1, L000002983, YDR457W
E3 ubiquitin ligase of the hect-domain class; has a role in mRNA export from the nucleus and may regulate transcriptional coactivators; involved in degradation of excess histones; interacts with Dia2p and is required for Dia2p degradation; required to target Cdc6p for ubiquitin-mediated destruction during G1 phase
Saccharomyces cerevisiae (S288c)
PREY

LRP1

RRP47, YC1D, YHR081W
Nuclear exosome-associated nucleic acid binding protein; involved in RNA processing, surveillance, degradation, tethering, and export; forms a stable heterodimer with Rrp6p and regulates its exonucleolytic activity; rapidly degraded by the proteasome in the absence of Rrp6p; homolog of mammalian nuclear matrix protein C1D involved in regulation of DNA repair and recombination
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins.

Sung MK, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, Hoelz A, Hess S, Deshaies RJ

Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, ... [more]

Elife Aug. 23, 2016; 5(0); [Pubmed: 27552055]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
LRP1 TOM1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
354043

Curated By

  • BioGRID