UHRF1
Gene Ontology Biological Process
- cell proliferation [IEP]
- histone monoubiquitination [ISS]
- histone ubiquitination [IDA]
- maintenance of DNA methylation [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of DNA topoisomerase (ATP-hydrolyzing) activity [IC]
- positive regulation of cellular protein metabolic process [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IC]
- protein autoubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
Gene Ontology Molecular Function- core promoter proximal region sequence-specific DNA binding [IDA]
- hemi-methylated DNA-binding [IDA]
- histone binding [IDA]
- identical protein binding [ISS]
- methyl-CpG binding [IDA]
- methylated histone binding [IDA]
- nucleosomal histone binding [ISS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- ubiquitin-protein transferase activity [IDA, ISS]
- zinc ion binding [IDA]
- core promoter proximal region sequence-specific DNA binding [IDA]
- hemi-methylated DNA-binding [IDA]
- histone binding [IDA]
- identical protein binding [ISS]
- methyl-CpG binding [IDA]
- methylated histone binding [IDA]
- nucleosomal histone binding [ISS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- ubiquitin-protein transferase activity [IDA, ISS]
- zinc ion binding [IDA]
Gene Ontology Cellular Component
HSPA1A
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- RNA metabolic process [TAS]
- cellular heat acclimation [IMP]
- cellular response to heat [IDA]
- cellular response to oxidative stress [TAS]
- gene expression [TAS]
- mRNA catabolic process [IDA]
- mRNA metabolic process [TAS]
- negative regulation of apoptotic process [IMP, TAS]
- negative regulation of cell death [IDA, IMP]
- negative regulation of cell growth [IMP]
- negative regulation of cell proliferation [IMP]
- negative regulation of extrinsic apoptotic signaling pathway in absence of ligand [IMP]
- negative regulation of inclusion body assembly [IDA]
- negative regulation of protein ubiquitination [IDA]
- positive regulation of erythrocyte differentiation [IMP]
- protein refolding [IDA]
- protein stabilization [TAS]
- regulation of cell death [IMP]
- response to unfolded protein [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [IDA]
- G-protein coupled receptor binding [IPI]
- double-stranded RNA binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein binding involved in protein folding [IDA]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA, NAS, TAS]
- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [IDA]
- G-protein coupled receptor binding [IPI]
- double-stranded RNA binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein binding involved in protein folding [IDA]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA, NAS, TAS]
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- aggresome [IDA]
- blood microparticle [IDA]
- centriole [IDA]
- cytoplasm [IDA, TAS]
- cytosol [IDA, TAS]
- endoplasmic reticulum [TAS]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- inclusion body [IDA]
- mitochondrion [TAS]
- nuclear speck [IDA]
- nucleus [IDA]
- perinuclear region of cytoplasm [IDA]
- ribonucleoprotein complex [IDA]
- ubiquitin ligase complex [IDA]
- vesicle [IDA]
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Regulation of Ubiquitin-like with Plant Homeodomain and RING Finger Domain 1 (UHRF1) Protein Stability by Heat Shock Protein 90 Chaperone Machinery.
As a protein critical for DNA maintenance methylation and cell proliferation, UHRF1 is frequently highly expressed in various human cancers and is considered as a drug target for cancer therapy. In a high throughput screening for small molecules that induce UHRF1 protein degradation, we have identified the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). We present evidence that UHRF1 interacts with HSP90 chaperone ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HSPA1A UHRF1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID