VAPA
Gene Ontology Biological Process
- COPII-coated vesicle budding [IMP]
- ER to Golgi vesicle-mediated transport [IMP]
- cell death [IMP]
- endoplasmic reticulum organization [IMP]
- membrane fusion [TAS]
- negative regulation by host of viral genome replication [IDA]
- neuron projection development [IMP]
- positive regulation by host of viral genome replication [IDA]
- positive regulation by host of viral release from host cell [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IMP]
- protein folding in endoplasmic reticulum [IMP]
- protein localization to endoplasmic reticulum [IMP]
- signal transduction [IMP]
- small molecule metabolic process [TAS]
- sphingolipid biosynthetic process [TAS]
- sphingolipid metabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
VAPB
Gene Ontology Biological Process
- COPII-coated vesicle budding [IMP]
- ER to Golgi vesicle-mediated transport [IMP]
- activation of signaling protein activity involved in unfolded protein response [IDA]
- cellular calcium ion homeostasis [IMP]
- endoplasmic reticulum organization [IMP]
- endoplasmic reticulum unfolded protein response [IMP]
- modulation by virus of host morphology or physiology [IDA]
- negative regulation by host of viral genome replication [IDA]
- negative regulation by host of viral release from host cell [IDA]
- negative regulation by virus of viral protein levels in host cell [IDA]
- positive regulation by host of viral genome replication [IDA]
- positive regulation by host of viral release from host cell [IDA]
- positive regulation of viral genome replication [IMP]
- small molecule metabolic process [TAS]
- sphingolipid biosynthetic process [TAS]
- sphingolipid metabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Architecture of the human interactome defines protein communities and disease networks.
The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and ... [more]
Quantitative Score
- 0.999999999 [compPASS Score]
Throughput
- High Throughput
Additional Notes
- BioPlex 2.0 HEK 293T cells CompPASS score = 0.999999999, threshold = 0.75. Quantitative scores calculated by CompPASS-Plus (Huttlin et al. Cell, 2015, PMID: 26186194).
- See BioPlex Interactome for details (https://bioplex.hms.harvard.edu/index.php).
- This data has also been reanalyzed as part of BioPlex 3.0 (PMID: 33961781) and may be re-scored from BioPlex 1.0 (PMID: 26186194). Only scores from within BioPlex 2.0 (PMID: 28514442) should be compared directly.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
VAPA VAPB | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3374672 | |
VAPB VAPA | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3374838 | |
VAPA VAPB | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 1449208 | |
VAPB VAPA | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9999 | BioGRID | 1197982 | |
VAPB VAPA | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3171413 | |
VAPA VAPB | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3107269 | |
VAPB VAPA | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3720620 | |
VAPA VAPB | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3682937 | |
VAPB VAPA | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3745321 | |
VAPA VAPB | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3676563 | |
VAPA VAPB | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | 6.65 | BioGRID | 3010323 | |
VAPA VAPB | Reconstituted Complex Reconstituted Complex An interaction is detected between purified proteins in vitro. | Low | - | BioGRID | - |
Curated By
- BioGRID