BAIT

MSB3

GYP3, L000003918, YNL293W
Rab GTPase-activating protein; regulates endocytosis via inactivation of Vps21p at endosomes and vacuole fusion via inactivation of Ypt7p at vacuoles; also acts on Ypt52p and Sec4p; required for proper actin organization; also localizes to plasma membrane and sites of polarized growth; relocalizes from bud neck to cytoplasm upon DNA replication stress; similar to the TBC-domain Tre2 oncogene; MSB3 has a paralog, MSB4, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

MSB4

L000003919, YOL112W
GTPase-activating protein of the Ras superfamily; acts primarily on Sec4p, localizes to the bud site and bud tip; msb3 msb4 double mutation causes defects in secretion and actin organization; similar to the TBC-domain Tre2 oncogene; MSB4 has a paralog, MSB3, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

At least two regions of the oncoprotein Tre2 are involved in its lack of GAP activity.

Bizimungu C, Vandenbol M

The product of the human Tre2 oncogene is structurally related to the Ypt/Rab GTPase-activating proteins (Ypt/Rab GAPs). Particularly, the oncoprotein shares with the yeast proteins Msb3p and Msb4p, and with the human protein RN-tre the highly conserved TBC domain, forming the catalytically active domain of Ypt/Rab GAPs. Yet, the Tre2 oncogene seems to encode a nonfunctional Rab GAP. As regions ... [more]

Biochem. Biophys. Res. Commun. Sep. 30, 2005; 335(3);883-90 [Pubmed: 16099424]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • sensitivity to caffeine, DMSO, NaCl, LiCl

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MSB3 MSB4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1545BioGRID
2174853
MSB3 MSB4
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
156410
MSB3 MSB4
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
519346
MSB3 MSB4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
157215
MSB4 MSB3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
162233
MSB3 MSB4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158319

Curated By

  • BioGRID