TOP1
Gene Ontology Biological Process
- DNA strand elongation involved in DNA replication [IMP]
- DNA topological change [IDA, IMP]
- chromatin assembly or disassembly [IMP]
- chromatin silencing at rDNA [IMP]
- mitotic chromosome condensation [IGI, IMP]
- nuclear migration [IGI, IMP]
- regulation of mitotic recombination [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
SUB1
Gene Ontology Biological Process
- RNA polymerase III transcriptional preinitiation complex assembly [IDA]
- double-strand break repair via nonhomologous end joining [IMP]
- hyperosmotic response [IGI]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IGI, IPI]
- positive regulation of transcription from RNA polymerase III promoter [IDA, IGI, IMP]
- regulation of transcription from RNA polymerase II promoter [ISS]
- regulation of transcription from RNA polymerase II promoter in response to stress [IDA, IGI, IMP]
- termination of RNA polymerase II transcription [IGI]
Gene Ontology Molecular Function
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Yeast Sub1 and human PC4 are G-quadruplex binding proteins that suppress genome instability at co-transcriptionally formed G4 DNA.
G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: mitotic recombination (APO:0000225)
Additional Notes
- Figure 1
- recombination rate
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TOP1 SUB1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.014 | BioGRID | 222537 | |
SUB1 TOP1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1847 | BioGRID | 2161359 | |
TOP1 SUB1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2297569 | |
TOP1 SUB1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 513257 |
Curated By
- BioGRID