BAIT

EXO1

DHS1, Rad2 family nuclease EXO1, L000000505, L000003929, YOR033C
5'-3' exonuclease and flap-endonuclease; involved in recombination, double-strand break repair, MMS2 error-free branch of the post replication (PRR) pathway and DNA mismatch repair; role in telomere maintenance; member of the Rad2p nuclease family, with conserved N and I nuclease domains; relative distribution to the nucleus increases upon DNA replication stress; EXO1 has a paralog, DIN7, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

DNA2

WEB2, bifuctional ATP-dependent DNA helicase/ssDNA endodeoxyribonuclease DNA2, L000003158, YHR164C
Tripartite DNA replication factor; has single-stranded DNA-dependent ATPase, ATP-dependent nuclease, and helicase activities; tracking protein for flap cleavage during Okazaki fragment maturation; involved in DNA repair and processing of meiotic DNA double strand breaks; required for normal life span; component of telomeric chromatin, with cell-cycle dependent localization; required for telomerase-dependent telomere synthesis; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability.

Colosio A, Frattini C, Pellicano G, Villa-Hernandez S, Bermejo R

Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analysis. This revealed a novel role for Exo1 nuclease in resecting reversed replication fork ... [more]

Nucleic Acids Res. Dec. 15, 2016; 44(22);10676-10690 [Pubmed: 27672038]

Throughput

  • Low Throughput

Ontology Terms

  • vegetative growth (APO:0000106)
  • resistance to chemicals (APO:0000087)

Additional Notes

  • Figure 4
  • HU-sensitivity
  • dna2-1

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DNA2 EXO1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
206209
DNA2 EXO1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
259605
DNA2 EXO1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2827BioGRID
1988674
DNA2 EXO1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
346188
EXO1 DNA2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2534741
DNA2 EXO1
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2338035
DNA2 EXO1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
563427
DNA2 EXO1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
3674854
DNA2 EXO1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2338036
DNA2 EXO1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
206189

Curated By

  • BioGRID