EGFR
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MAPK cascade [NAS]
- activation of phospholipase A2 activity by calcium-mediated signaling [TAS]
- activation of phospholipase C activity [TAS]
- axon guidance [TAS]
- cell proliferation [IDA]
- cell surface receptor signaling pathway [IDA]
- cellular response to epidermal growth factor stimulus [ISS]
- cellular response to estradiol stimulus [IDA]
- epidermal growth factor receptor signaling pathway [IDA, TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- learning or memory [ISS]
- negative regulation of apoptotic process [IMP]
- negative regulation of epidermal growth factor receptor signaling pathway [TAS]
- negative regulation of protein catabolic process [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- ossification [NAS]
- peptidyl-tyrosine phosphorylation [IDA, IMP, TAS]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of DNA repair [IDA]
- positive regulation of DNA replication [IDA]
- positive regulation of ERK1 and ERK2 cascade [IDA]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of catenin import into nucleus [IMP]
- positive regulation of cell migration [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of cyclin-dependent protein serine/threonine kinase activity involved in G1/S transition of mitotic cell cycle [IDA]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of nitric oxide biosynthetic process [IDA]
- positive regulation of phosphorylation [IDA]
- positive regulation of protein kinase B signaling [IMP]
- positive regulation of protein phosphorylation [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- protein autophosphorylation [IMP]
- protein insertion into membrane [TAS]
- regulation of nitric-oxide synthase activity [IDA]
- regulation of peptidyl-tyrosine phosphorylation [IMP]
- response to UV-A [IDA]
- response to stress [NAS]
- signal transduction [IDA, TAS]
- single organismal cell-cell adhesion [IMP]
Gene Ontology Molecular Function- MAP kinase kinase kinase activity [NAS]
- actin filament binding [IDA]
- chromatin binding [IDA]
- double-stranded DNA binding [NAS]
- enzyme binding [IPI]
- epidermal growth factor-activated receptor activity [IDA, NAS]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IDA]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IMP, TAS]
- transmembrane receptor protein tyrosine kinase activity [TAS]
- transmembrane signaling receptor activity [IDA]
- ubiquitin protein ligase binding [IPI]
- MAP kinase kinase kinase activity [NAS]
- actin filament binding [IDA]
- chromatin binding [IDA]
- double-stranded DNA binding [NAS]
- enzyme binding [IPI]
- epidermal growth factor-activated receptor activity [IDA, NAS]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IDA]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IMP, TAS]
- transmembrane receptor protein tyrosine kinase activity [TAS]
- transmembrane signaling receptor activity [IDA]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
TP53
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator [IDA, IMP]
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator [IMP]
- DNA strand renaturation [IDA]
- ER overload response [IDA]
- Notch signaling pathway [TAS]
- Ras protein signal transduction [IEP]
- apoptotic process [TAS]
- base-excision repair [TAS]
- blood coagulation [TAS]
- cell aging [IMP]
- cell cycle arrest [IDA, IMP]
- cell differentiation [TAS]
- cell proliferation [TAS]
- cellular protein localization [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IBA]
- cellular response to drug [IEP]
- cellular response to glucose starvation [IDA]
- cellular response to hypoxia [IEP]
- cellular response to ionizing radiation [IMP]
- chromatin assembly [IDA]
- determination of adult lifespan [ISS]
- intrinsic apoptotic signaling pathway [TAS]
- intrinsic apoptotic signaling pathway by p53 class mediator [IMP]
- intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator [IDA]
- mitotic G1 DNA damage checkpoint [IMP]
- multicellular organismal development [IMP]
- negative regulation of apoptotic process [IDA]
- negative regulation of cell growth [IMP]
- negative regulation of cell proliferation [ISS]
- negative regulation of fibroblast proliferation [IMP]
- negative regulation of helicase activity [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IBA, IDA, ISS]
- negative regulation of transcription, DNA-templated [ISS]
- nucleotide-excision repair [IMP]
- oligodendrocyte apoptotic process [IDA]
- oxidative stress-induced premature senescence [IMP]
- positive regulation of apoptotic process [IDA]
- positive regulation of cell cycle arrest [IMP]
- positive regulation of histone deacetylation [IBA]
- positive regulation of intrinsic apoptotic signaling pathway [IMP]
- positive regulation of neuron apoptotic process [IBA]
- positive regulation of peptidyl-tyrosine phosphorylation [ISS]
- positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway [TAS]
- positive regulation of protein oligomerization [IDA]
- positive regulation of reactive oxygen species metabolic process [IMP]
- positive regulation of release of cytochrome c from mitochondria [IDA]
- positive regulation of thymocyte apoptotic process [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of transcription, DNA-templated [IDA, IMP]
- protein complex assembly [IDA]
- protein localization [IDA]
- protein tetramerization [TAS]
- regulation of apoptotic process [IDA]
- regulation of mitochondrial membrane permeability [TAS]
- regulation of transcription, DNA-templated [IDA]
- replicative senescence [IMP]
- response to X-ray [IBA]
- response to antibiotic [IEP]
- response to gamma radiation [IMP]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [IMP]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chaperone binding [IPI]
- chromatin binding [IDA]
- copper ion binding [IDA]
- damaged DNA binding [IBA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- identical protein binding [IPI]
- p53 binding [IBA]
- protease binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein kinase binding [IPI]
- protein phosphatase 2A binding [IPI]
- protein phosphatase binding [IPI]
- receptor tyrosine kinase binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- zinc ion binding [TAS]
- ATP binding [IDA]
- DNA binding [IMP]
- RNA polymerase II transcription factor binding [IPI]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chaperone binding [IPI]
- chromatin binding [IDA]
- copper ion binding [IDA]
- damaged DNA binding [IBA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- identical protein binding [IPI]
- p53 binding [IBA]
- protease binding [IPI]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein kinase binding [IPI]
- protein phosphatase 2A binding [IPI]
- protein phosphatase binding [IPI]
- receptor tyrosine kinase binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- zinc ion binding [TAS]
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Ranking novel cancer driving synthetic lethal gene pairs using TCGA data.
Synthetic lethality (SL) has emerged as a promising approach to cancer therapy. In contrast to the costly and labour-intensive genome-wide siRNA or CRISPR-based human cell line screening approaches, computational approaches to prioritize potential synthetic lethality pairs for further experimental validation represent an attractive alternative. In this study, we propose an efficient and comprehensive in-silico pipeline to rank novel SL gene ... [more]
Throughput
- Low Throughput
Additional Notes
- drug sensitivity
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TP53 EGFR | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 1278721 |
Curated By
- BioGRID