RAP1
Gene Ontology Biological Process
- chromatin organization involved in regulation of transcription [IDA]
- chromatin silencing at silent mating-type cassette [IGI]
- chromatin silencing at telomere [IGI]
- establishment of chromatin silencing at telomere [IPI]
- establishment of protein localization to chromatin [IPI]
- establishment of protein localization to telomere [IPI]
- negative regulation of chromatin silencing [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- protection from non-homologous end joining at telomere [IMP]
- regulation of glycolytic by positive regulation of transcription from RNA polymerase II promoter [IGI]
- telomere maintenance [IMP]
- telomere maintenance via telomere lengthening [IDA, IMP]
Gene Ontology Molecular Function- DNA binding, bending [IDA]
- G-quadruplex DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IDA]
- TBP-class protein binding RNA polymerase II transcription factor activity [IDA]
- TFIID-class transcription factor binding [IDA]
- core promoter proximal region sequence-specific DNA binding [IDA]
- nucleosomal DNA binding [IDA]
- sequence-specific DNA binding [IDA]
- telomeric DNA binding [IDA]
- DNA binding, bending [IDA]
- G-quadruplex DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IDA]
- TBP-class protein binding RNA polymerase II transcription factor activity [IDA]
- TFIID-class transcription factor binding [IDA]
- core promoter proximal region sequence-specific DNA binding [IDA]
- nucleosomal DNA binding [IDA]
- sequence-specific DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
MRE11
Gene Ontology Biological Process
- DNA double-strand break processing involved in repair via synthesis-dependent strand annealing [IMP]
- DNA repair [IMP]
- ascospore formation [IMP]
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- reciprocal meiotic recombination [IMP]
- regulation of transcription during meiosis [IMP]
Gene Ontology Molecular Function- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
The mre11 A470 alleles influence the hereditability and the segregation of telosomes in Saccharomyces cerevisiae.
Telomeres, the nucleoprotein complexes at the termini of linear chromosomes, are essential for the processes of end replication, end protection, and chromatin segregation. The Mre11 complex is involved in multiple cellular roles in DNA repair and structure in the regulation and function of telomere size homeostasis. In this study, we characterize yeast telomere chromatin structure, phenotypic heritability, and chromatin segregation ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- rap1-5 mre11A470T
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAP1 MRE11 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1412 | BioGRID | 2011212 | |
RAP1 MRE11 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 442518 | |
RAP1 MRE11 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 442519 | |
MRE11 RAP1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | 0.027 | BioGRID | 822624 |
Curated By
- BioGRID