BAIT

CTF4

CHL15, POB1, chromatin-binding protein CTF4, L000000326, YPR135W
Chromatin-associated protein; required for sister chromatid cohesion; interacts with DNA polymerase alpha (Pol1p) and may link DNA synthesis to sister chromatid cohesion
Saccharomyces cerevisiae (S288c)
PREY

TOF1

L000004244, YNL273W
Subunit of a replication-pausing checkpoint complex; Tof1p-Mrc1p-Csm3p acts at the stalled replication fork to promote sister chromatid cohesion after DNA damage, facilitating gap repair of damaged DNA; interacts with the MCM helicase; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.

Sasaki M, Kobayashi T

Arrested replication forks lead to DNA double-strand breaks (DSBs), which are a major source of genome rearrangements. Yet DSB repair in the context of broken forks remains poorly understood. Here we demonstrate that DSBs that are formed at arrested forks in the budding yeast ribosomal RNA gene (rDNA) locus are normally repaired by pathways dependent on the Mre11-Rad50-Xrs2 complex but ... [more]

Mol. Cell May. 18, 2017; 66(4);533-545.e5 [Pubmed: 28525744]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: chromosome/plasmid maintenance (APO:0000143)

Additional Notes

  • rDNA copy number

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CTF4 TOF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-13.9596BioGRID
213489
TOF1 CTF4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4669BioGRID
408093
TOF1 CTF4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5586BioGRID
2174151
TOF1 CTF4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.568BioGRID
2433393
TOF1 CTF4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492528
TOF1 CTF4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454913
CTF4 TOF1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
455340
CTF4 TOF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110788
TOF1 CTF4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110789

Curated By

  • BioGRID