BAIT

ELG1

RTT110, S000007438, YOR144C
Subunit of an alternative replication factor C complex; important for DNA replication and genome integrity; suppresses spontaneous DNA damage; involved in homologous recombination-mediated repair and telomere homeostasis; required for PCNA (Pol30p) unloading during DNA replication
Saccharomyces cerevisiae (S288c)
PREY

SLX5

HEX3, ULS2, SUMO-targeted ubiquitin ligase complex subunit SLX5, L000000768, YDL013W
Subunit of the Slx5-Slx8 SUMO-targeted ubiquitin ligase (STUbL) complex; stimulated by SUMO-modified substrates; contains a RING domain and two SIM motifs; forms SUMO-dependent nuclear foci, including DNA repair centers; associates with the centromere; null mutants are aneuploid, have a metaphase delay, and spindle defects including: mispositioned spindles, fish hook spindles, and aberrant spindle kinetics; required for maintenance of genome integrity like human ortholog RNF4
Saccharomyces cerevisiae (S288c)

Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Publication

A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5.

Lev I, Shemesh K, Volpe M, Sau S, Levinton N, Molco M, Singh S, Liefshitz B, Ben Aroya S, Kupiec M

The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given ... [more]

Genetics Jul. 01, 2017; 206(3);1683-1697 [Pubmed: 28476868]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ELG1 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.5001BioGRID
220771
ELG1 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1636BioGRID
416039
ELG1 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2551BioGRID
2184535
ELG1 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1812BioGRID
2440711
ELG1 SLX5
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
568330
ELG1 SLX5
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
SLX5 ELG1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
ELG1 SLX5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453919
SLX5 ELG1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453950
SLX5 ELG1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
568334
ELG1 SLX5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
451446
ELG1 SLX5
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
165105
ELG1 SLX5
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-

Curated By

  • BioGRID