BAIT

SEC2

guanine nucleotide exchange factor SEC2, L000001828, YNL272C
Guanyl-nucleotide exchange factor for the small G-protein Sec4p; essential for post-Golgi vesicle transport and for autophagy; associates with the exocyst, via exocyst subunit Sec15p, on secretory vesicles
GO Process (2)
GO Function (2)
GO Component (5)
Saccharomyces cerevisiae (S288c)
PREY

EXO70

L000003349, YJL085W
Subunit of the exocyst complex; the exocyst mediates polarized targeting and tethering of post-Golgi secretory vesicles to active sites of exocytosis prior to SNARE-mediated fusion; PtdIns[4,5]P2-binding protein that localizes to exocytic sites in an actin-independent manner, targeting and anchoring the exocyst with Sec3p; involved in exocyst assembly; direct downstream effector of Rho3p and Cdc42p; relocalizes from bud neck to cytoplasm upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p.

Liu D, Novick P

The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we ... [more]

J. Cell Biol. Oct. 13, 2014; 207(1);59-72 [Pubmed: 25313406]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC2 EXO70
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7414BioGRID
1950226
EXO70 SEC2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
345771

Curated By

  • BioGRID