BAIT

SAM37

MAS37, PET3027, TOM37, SAM complex subunit SAM37, L000002841, L000003251, YMR060C
Component of the Sorting and Assembly Machinery (SAM) complex; the SAM (or TOB) complex is located in the mitochondrial outer membrane; binds precursors of beta-barrel proteins and facilitates their outer membrane insertion; contributes to SAM complex stability
Saccharomyces cerevisiae (S288c)
PREY

TOM6

ISP6, MOM8B, L000000877, YOR045W
Component of the TOM (translocase of outer membrane) complex; responsible for recognition and initial import steps for all mitochondrially directed proteins; promotes assembly and stability of the TOM complex
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

Wenz LS, Ellenrieder L, Qiu J, Bohnert M, Zufall N, van der Laan M, Pfanner N, Wiedemann N, Becker T

Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular ... [more]

J. Cell Biol. Sep. 28, 2015; 210(7);1047-54 [Pubmed: 26416958]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SAM37 TOM6
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
SAM37 TOM6
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
531287
SAM37 TOM6
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
518891
TOM6 SAM37
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
518899
SAM37 TOM6
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
2338026
TOM6 SAM37
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6558BioGRID
2182735
SAM37 TOM6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7324BioGRID
2161628
SAM37 TOM6
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
531291
SAM37 TOM6
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
518902

Curated By

  • BioGRID