BAIT

CCR4

FUN27, NUT21, CCR4-NOT core exoribonuclease subunit CCR4, L000000239, YAL021C
Component of the CCR4-NOT transcriptional complex; CCR4-NOT is involved in regulation of gene expression; component of the major cytoplasmic deadenylase, which is involved in mRNA poly(A) tail shortening
Saccharomyces cerevisiae (S288c)
PREY

VPS20

CHM6, VPL10, VPT20, ESCRT-III subunit protein VPS20, YMR077C
Myristoylated subunit of the ESCRT-III complex; the endosomal sorting complex required for transport of transmembrane proteins into the multivesicular body pathway to the lysosomal/vacuolar lumen; cytoplasmic protein recruited to endosomal membranes
GO Process (3)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Affinity Capture-RNA

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

Publication

Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient Responsive Transcripts as Targets of the Deadenylase Ccr4.

Miller JE, Zhang L, Jiang H, Li Y, Pugh BF, Reese JC

The Ccr4-Not complex is a major regulator of stress responses that controls gene expression at multiple levels, from transcription to mRNA decay. Ccr4, a core subunit of the complex, is the main cytoplasmic deadenylase in Saccharomyces cerevisiae, however its mRNA targets have not been mapped on a genome-wide scale. Here we describe a genome-wide approach, RNA immunoprecipitation-high throughput sequencing (RIP-seq), ... [more]

G3 (Bethesda) Nov. 20, 2017; (); [Pubmed: 29158339]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CCR4 VPS20
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
455277

Curated By

  • BioGRID