RAD5
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MRE11
Gene Ontology Biological Process
- DNA double-strand break processing involved in repair via synthesis-dependent strand annealing [IMP]
- DNA repair [IMP]
- ascospore formation [IMP]
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- reciprocal meiotic recombination [IMP]
- regulation of transcription during meiosis [IMP]
Gene Ontology Molecular Function- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy.
An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting interactions between its driving mutations and specific drug targets. Here we use a multi-species approach to develop a resource of synthetic lethal interactions relevant to cancer therapy. First, we screen in yeast ∼169,000 potential interactions among orthologs of human tumor suppressor genes (TSG) and ... [more]
Quantitative Score
- -2.81 [Confidence Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- Untreated conditions. SGA was used to score genetic interactions based on the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD5 MRE11 | Dosage Lethality Dosage Lethality A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene. | High | - | BioGRID | 2607155 | |
MRE11 RAD5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 3492786 | |
MRE11 RAD5 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 269246 | |
RAD5 MRE11 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2204587 | |
MRE11 RAD5 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 456988 | |
RAD5 MRE11 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 457070 |
Curated By
- BioGRID