BAIT

ELG1

RTT110, S000007438, YOR144C
Subunit of an alternative replication factor C complex; important for DNA replication and genome integrity; suppresses spontaneous DNA damage; involved in homologous recombination-mediated repair and telomere homeostasis; required for PCNA (Pol30p) unloading during DNA replication
Saccharomyces cerevisiae (S288c)
PREY

RAD54

XRS1, DNA-dependent ATPase RAD54, L000001574, YGL163C
DNA-dependent ATPase that stimulates strand exchange; modifies the topology of double-stranded DNA; involved in the recombinational repair of double-strand breaks in DNA during vegetative growth and meiosis; member of the SWI/SNF family of DNA translocases; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy.

Srivas R, Shen JP, Yang CC, Sun SM, Li J, Gross AM, Jensen J, Licon K, Bojorquez-Gomez A, Klepper K, Huang J, Pekin D, Xu JL, Yeerna H, Sivaganesh V, Kollenstart L, van Attikum H, Aza-Blanc P, Sobol RW, Ideker T

An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting interactions between its driving mutations and specific drug targets. Here we use a multi-species approach to develop a resource of synthetic lethal interactions relevant to cancer therapy. First, we screen in yeast ∼169,000 potential interactions among orthologs of human tumor suppressor genes (TSG) and ... [more]

Mol. Cell Aug. 04, 2016; 63(3);514-25 [Pubmed: 27453043]

Quantitative Score

  • -12.33 [Confidence Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • Untreated conditions. SGA was used to score genetic interactions based on the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score >= 2.0 for positive interactions (epistatic or suppressor interactions) and S score <= -2.5 for negative interactions (synthetic sick/lethal interactions).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ELG1 RAD54
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-5.577BioGRID
216922
ELG1 RAD54
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4439BioGRID
416047
RAD54 ELG1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4439BioGRID
379615
ELG1 RAD54
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5273BioGRID
2184543
RAD54 ELG1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4149BioGRID
2116828
ELG1 RAD54
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7554BioGRID
2440735
ELG1 RAD54
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492326
ELG1 RAD54
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
157140
ELG1 RAD54
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454943
RAD54 ELG1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457258
ELG1 RAD54
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
451455
ELG1 RAD54
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
165100

Curated By

  • BioGRID