BAIT

SEC22

SLY2, TS26, TSL26, SNAP receptor SEC22, L000001845, S000029606, L000002362, YLR268W
R-SNARE protein; assembles into SNARE complex with Bet1p, Bos1p and Sed5p; cycles between the ER and Golgi complex; involved in anterograde and retrograde transport between the ER and Golgi; synaptobrevin homolog
Saccharomyces cerevisiae (S288c)
PREY

RTN1

YDR233C
Reticulon protein; stabilizes membrane curvature; involved in nuclear pore assembly and maintenance of tubular ER morphology; mutant overexpressing RTN1 shows increase in tubular ER; interacts with exocyst subunit Sec6p, Yip3p, and Sbh1p; more abundant than Rtn2p; member of the RTNLA subfamily; mutants have reduced phosphatidylserine transfer between the ER and mitochondria; RTN1 has a paralog, RTN2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

SNAREs support atlastin-mediated homotypic ER fusion in Saccharomyces cerevisiae.

Lee M, Ko YJ, Moon Y, Han M, Kim HW, Lee SH, Kang K, Jun Y

Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were required for Sey1p-mediated ... [more]

J. Cell Biol. Aug. 03, 2015; 210(3);451-70 [Pubmed: 26216899]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: endoplasmic reticulum morphology (APO:0000270)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC22 RTN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1605BioGRID
399415
RTN1 SEC22
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.6634BioGRID
896461

Curated By

  • BioGRID