BAIT

SAE2

COM1, ssDNA endodeoxyribonuclease SAE2, L000002892, YGL175C
Endonuclease required for telomere elongation; also required for telomeric 5' C-rich strand resection; involved in processing hairpin DNA structures with MRX complex; involved in double-strand break repair; required for normal resistance to DNA-damaging agents; exists in form of inactive oligomers that are transiently released into smaller active units by a series of phosphorylations; DNA damage triggers removal of Sae2p ensuring that active Sae2p is present only transiently
Saccharomyces cerevisiae (S288c)
PREY

PIF1

TST1, DNA helicase PIF1, L000001435, YML061C
DNA helicase, potent G-quadruplex DNA binder/unwinder; possesses strand annealing activity; promotes DNA synthesis during break-induced replication; important for crossover recombination; translation from different start sites produces mitochondrial and nuclear forms; nuclear form is a catalytic inhibitor of telomerase; mitochondrial form involved in DNA repair and recombination; mutations affect Zn, Fe homeostasis; regulated by Rad53p-dependent phosphorylation in rho0 cells
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Escape of Sgs1 from Rad9 inhibition reduces the requirement for Sae2 and functional MRX in DNA end resection.

Bonetti D, Villa M, Gobbini E, Cassani C, Tedeschi G, Longhese MP

Homologous recombination requires nucleolytic degradation (resection) of DNA double-strand break (DSB) ends. In Saccharomyces cerevisiae, the MRX complex and Sae2 are involved in the onset of DSB resection, whereas extensive resection requires Exo1 and the concerted action of Dna2 and Sgs1. Here, we show that the checkpoint protein Rad9 limits the action of Sgs1/Dna2 in DSB resection by inhibiting Sgs1 ... [more]

EMBO Rep. Mar. 01, 2015; 16(3);351-61 [Pubmed: 25637499]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • genetic complex
  • sae2 dna2 pif1-M2 triple mutant

Curated By

  • BioGRID