EGFR
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MAPK cascade [NAS]
- activation of phospholipase A2 activity by calcium-mediated signaling [TAS]
- activation of phospholipase C activity [TAS]
- axon guidance [TAS]
- cell proliferation [IDA]
- cell surface receptor signaling pathway [IDA]
- cellular response to epidermal growth factor stimulus [ISS]
- cellular response to estradiol stimulus [IDA]
- epidermal growth factor receptor signaling pathway [IDA, TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- learning or memory [ISS]
- negative regulation of apoptotic process [IMP]
- negative regulation of epidermal growth factor receptor signaling pathway [TAS]
- negative regulation of protein catabolic process [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- ossification [NAS]
- peptidyl-tyrosine phosphorylation [IDA, IMP, TAS]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of DNA repair [IDA]
- positive regulation of DNA replication [IDA]
- positive regulation of ERK1 and ERK2 cascade [IDA]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of catenin import into nucleus [IMP]
- positive regulation of cell migration [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of cyclin-dependent protein serine/threonine kinase activity involved in G1/S transition of mitotic cell cycle [IDA]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of nitric oxide biosynthetic process [IDA]
- positive regulation of phosphorylation [IDA]
- positive regulation of protein kinase B signaling [IMP]
- positive regulation of protein phosphorylation [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- protein autophosphorylation [IMP]
- protein insertion into membrane [TAS]
- regulation of nitric-oxide synthase activity [IDA]
- regulation of peptidyl-tyrosine phosphorylation [IMP]
- response to UV-A [IDA]
- response to stress [NAS]
- signal transduction [IDA, TAS]
- single organismal cell-cell adhesion [IMP]
Gene Ontology Molecular Function- MAP kinase kinase kinase activity [NAS]
- actin filament binding [IDA]
- chromatin binding [IDA]
- double-stranded DNA binding [NAS]
- enzyme binding [IPI]
- epidermal growth factor-activated receptor activity [IDA, NAS]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IDA]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IMP, TAS]
- transmembrane receptor protein tyrosine kinase activity [TAS]
- transmembrane signaling receptor activity [IDA]
- ubiquitin protein ligase binding [IPI]
- MAP kinase kinase kinase activity [NAS]
- actin filament binding [IDA]
- chromatin binding [IDA]
- double-stranded DNA binding [NAS]
- enzyme binding [IPI]
- epidermal growth factor-activated receptor activity [IDA, NAS]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IDA]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IMP, TAS]
- transmembrane receptor protein tyrosine kinase activity [TAS]
- transmembrane signaling receptor activity [IDA]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
RGS4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
RGS16 function is regulated by epidermal growth factor receptor-mediated tyrosine phosphorylation.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
EGFR RGS4 | PCA PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay. | High | - | BioGRID | 1506038 | |
EGFR RGS4 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - |
Curated By
- BioGRID