BAIT

PAP2

TRF4, non-canonical poly(A) polymerase PAP2, L000002953, YOL115W
Non-canonical poly(A) polymerase; involved in nuclear RNA degradation as a component of TRAMP; catalyzes polyadenylation of hypomodified tRNAs, and snoRNA and rRNA precursors; required for mRNA surveillance and maintenance of genome integrity, serving as a link between RNA and DNA metabolism; overlapping but non-redundant functions with Trf5p; relocalizes to cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)
PREY

ASF1

CIA1, nucleosome assembly factor ASF1, L000000126, YJL115W
Nucleosome assembly factor; involved in chromatin assembly and disassembly, anti-silencing protein that causes derepression of silent loci when overexpressed; plays a role in regulating Ty1 transposition; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae.

Reis CC, Campbell JL

Balanced levels of histones are crucial for chromosome stability, and one major component of this control regulates histone mRNA amounts. The Saccharomyces cerevisiae poly(A) polymerases Trf4 and Trf5 are involved in a quality control mechanism that mediates polyadenylation and consequent degradation of various RNA species by the nuclear exosome. None of the known RNA targets, however, explains the fact that ... [more]

Genetics Mar. 01, 2007; 175(3);993-1010 [Pubmed: 17179095]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PAP2 ASF1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454703

Curated By

  • BioGRID