RYR2
Gene Ontology Biological Process
- Purkinje myocyte to ventricular cardiac muscle cell signaling [ISS]
- calcium ion transport [IDA]
- calcium ion transport into cytosol [IDA]
- calcium-mediated signaling [ISS]
- calcium-mediated signaling using intracellular calcium source [IDA]
- cardiac muscle contraction [IMP]
- cardiac muscle hypertrophy [ISS]
- cell communication by electrical coupling involved in cardiac conduction [IC]
- cellular calcium ion homeostasis [ISS]
- cellular response to caffeine [IDA, ISS]
- cellular response to epinephrine stimulus [TAS]
- cytosolic calcium ion homeostasis [ISS]
- detection of calcium ion [IDA]
- embryonic heart tube morphogenesis [ISS]
- establishment of protein localization to endoplasmic reticulum [IDA]
- ion transmembrane transport [TAS]
- left ventricular cardiac muscle tissue morphogenesis [ISS]
- positive regulation of calcium-transporting ATPase activity [IDA]
- positive regulation of heart rate [ISS]
- positive regulation of ryanodine-sensitive calcium-release channel activity by adrenergic receptor signaling pathway involved in positive regulation of cardiac muscle contraction [ISS]
- positive regulation of sequestering of calcium ion [IDA]
- positive regulation of the force of heart contraction [IMP]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC, ISS]
- regulation of heart rate [IMP]
- release of sequestered calcium ion into cytosol [IDA, ISS]
- release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IMP, ISS]
- response to caffeine [IDA]
- response to hypoxia [ISS]
- response to muscle stretch [IMP]
- response to redox state [IDA]
- sarcoplasmic reticulum calcium ion transport [TAS]
- transmembrane transport [TAS]
- type B pancreatic cell apoptotic process [IMP]
- ventricular cardiac muscle cell action potential [ISS]
Gene Ontology Molecular Function- calcium channel activity [ISS]
- calcium-induced calcium release activity [IDA]
- calcium-release channel activity [IDA]
- calmodulin binding [IMP, IPI, ISS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- intracellular ligand-gated calcium channel activity [ISS]
- ion channel binding [ISS]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IDA]
- protein kinase A regulatory subunit binding [IDA]
- ryanodine-sensitive calcium-release channel activity [IDA]
- suramin binding [IMP]
- calcium channel activity [ISS]
- calcium-induced calcium release activity [IDA]
- calcium-release channel activity [IDA]
- calmodulin binding [IMP, IPI, ISS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- intracellular ligand-gated calcium channel activity [ISS]
- ion channel binding [ISS]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IDA]
- protein kinase A regulatory subunit binding [IDA]
- ryanodine-sensitive calcium-release channel activity [IDA]
- suramin binding [IMP]
Gene Ontology Cellular Component
RYR2
Gene Ontology Biological Process
- Purkinje myocyte to ventricular cardiac muscle cell signaling [ISS]
- calcium ion transport [IDA]
- calcium ion transport into cytosol [IDA]
- calcium-mediated signaling [ISS]
- calcium-mediated signaling using intracellular calcium source [IDA]
- cardiac muscle contraction [IMP]
- cardiac muscle hypertrophy [ISS]
- cell communication by electrical coupling involved in cardiac conduction [IC]
- cellular calcium ion homeostasis [ISS]
- cellular response to caffeine [IDA, ISS]
- cellular response to epinephrine stimulus [TAS]
- cytosolic calcium ion homeostasis [ISS]
- detection of calcium ion [IDA]
- embryonic heart tube morphogenesis [ISS]
- establishment of protein localization to endoplasmic reticulum [IDA]
- ion transmembrane transport [TAS]
- left ventricular cardiac muscle tissue morphogenesis [ISS]
- positive regulation of calcium-transporting ATPase activity [IDA]
- positive regulation of heart rate [ISS]
- positive regulation of ryanodine-sensitive calcium-release channel activity by adrenergic receptor signaling pathway involved in positive regulation of cardiac muscle contraction [ISS]
- positive regulation of sequestering of calcium ion [IDA]
- positive regulation of the force of heart contraction [IMP]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC, ISS]
- regulation of heart rate [IMP]
- release of sequestered calcium ion into cytosol [IDA, ISS]
- release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IMP, ISS]
- response to caffeine [IDA]
- response to hypoxia [ISS]
- response to muscle stretch [IMP]
- response to redox state [IDA]
- sarcoplasmic reticulum calcium ion transport [TAS]
- transmembrane transport [TAS]
- type B pancreatic cell apoptotic process [IMP]
- ventricular cardiac muscle cell action potential [ISS]
Gene Ontology Molecular Function- calcium channel activity [ISS]
- calcium-induced calcium release activity [IDA]
- calcium-release channel activity [IDA]
- calmodulin binding [IMP, IPI, ISS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- intracellular ligand-gated calcium channel activity [ISS]
- ion channel binding [ISS]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IDA]
- protein kinase A regulatory subunit binding [IDA]
- ryanodine-sensitive calcium-release channel activity [IDA]
- suramin binding [IMP]
- calcium channel activity [ISS]
- calcium-induced calcium release activity [IDA]
- calcium-release channel activity [IDA]
- calmodulin binding [IMP, IPI, ISS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- intracellular ligand-gated calcium channel activity [ISS]
- ion channel binding [ISS]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IDA]
- protein kinase A regulatory subunit binding [IDA]
- ryanodine-sensitive calcium-release channel activity [IDA]
- suramin binding [IMP]
Gene Ontology Cellular Component
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Dantrolene rescues aberrant N-terminus intersubunit interactions in mutant pro-arrhythmic cardiac ryanodine receptors.
The ryanodine receptor (RyR2) is an intracellular Ca(2+) release channel essential for cardiac excitation-contraction coupling. Abnormal RyR2 channel function results in the generation of arrhythmias and sudden cardiac death. The present study was undertaken to investigate the mechanistic basis of RyR2 dysfunction in inherited arrhythmogenic cardiac disease.We present several lines of complementary evidence, indicating that the arrhythmia-associated L433P mutation disrupts ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| RYR2 RYR2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| RYR2 RYR2 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | Low | - | BioGRID | - | |
| RYR2 RYR2 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | Low | - | BioGRID | - | |
| RYR2 RYR2 | FRET FRET An interaction is inferred when close proximity of interaction partners is detected by fluorescence resonance energy transfer between pairs of fluorophore-labeled molecules, such as occurs between CFP (donor) and YFP (acceptor) fusion proteins. | Low | - | BioGRID | - | |
| RYR2 RYR2 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID