RKR1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RTF1
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- global genome nucleotide-excision repair [IMP]
- mRNA 3'-end processing [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- positive regulation of transcription elongation from RNA polymerase I promoter [IDA]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- recruitment of 3'-end processing factors to RNA polymerase II holoenzyme complex [IMP]
- regulation of chromatin silencing at telomere [IMP]
- regulation of histone H2B conserved C-terminal lysine ubiquitination [IDA, IMP]
- regulation of histone H2B ubiquitination [IMP]
- regulation of histone H3-K4 methylation [IMP]
- regulation of histone H3-K79 methylation [IMP]
- regulation of phosphorylation of RNA polymerase II C-terminal domain serine 2 residues [IMP]
- regulation of transcription from RNA polymerase II promoter [IGI]
- regulation of transcription-coupled nucleotide-excision repair [IGI]
- snoRNA 3'-end processing [IMP]
- snoRNA transcription from an RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Identification of Rkr1, a nuclear RING domain protein with functional connections to chromatin modification in Saccharomyces cerevisiae.
Proper transcription by RNA polymerase II is dependent on the modification state of the chromatin template. The Paf1 complex is associated with RNA polymerase II during transcription elongation and is required for several histone modifications that mark active genes. To uncover additional factors that regulate chromatin or transcription, we performed a genetic screen for mutations that cause lethality in the ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RKR1 RTF1 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 659254 | |
RTF1 RKR1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 659241 |
Curated By
- BioGRID