BAIT

SCS2

phosphatidylinositol-binding protein SCS2, L000002629, YER120W
Integral ER membrane protein, regulates phospholipid metabolism; one of 6 proteins (Ist2p, Scs2p, Scs22p, Tcb1p, Tcb2p, Tcb3p) that connect ER to the plasma membrane (PM) and regulate PI4P levels by controlling access of Sac1p phosphatase to its substrate PI4P in the PM; interacts with FFAT motif of Opi1p; involved in telomeric silencing; null shows inositol auxotrophy above 34 deg C; VAP homolog; SCS2 has a paralog, SCS22, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

LDB18

YLL049W
Component of the dynactin complex; dynactin is required for dynein activity; null mutant exhibits defects in nuclear migration and spindle orientation and has reduced affinity for alcian blue dye; has homology to mammalian dynactin subunit p24
GO Process (1)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Polarization of the endoplasmic reticulum by ER-septin tethering.

Chao JT, Wong AK, Tavassoli S, Young BP, Chruscicki A, Fang NN, Howe LJ, Mayor T, Foster LJ, Loewen CJ

Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in neurons controls glutamate signaling in ... [more]

Cell Jul. 31, 2014; 158(3);620-32 [Pubmed: 25083872]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
LDB18 SCS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2684BioGRID
396120
SCS2 LDB18
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2684BioGRID
376034
LDB18 SCS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3424BioGRID
2148615
SCS2 LDB18
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3747BioGRID
2109824
LDB18 SCS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1423BioGRID
2426505

Curated By

  • BioGRID