BAIT
TXNIP
EST01027, HHCPA78, THIF, VDUP1, RP11-315I20.4
thioredoxin interacting protein
GO Process (5)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Homo sapiens
PREY
PARP1
ADPRT, ADPRT 1, ADPRT1, ARTD1, PARP, PARP-1, PPOL, pADPRT-1, RP11-125A15.2
poly (ADP-ribose) polymerase 1
GO Process (12)
GO Function (7)
GO Component (6)
Gene Ontology Biological Process
- DNA repair [TAS]
- cellular response to insulin stimulus [IDA]
- double-strand break repair [IMP]
- gene expression [TAS]
- macrophage differentiation [TAS]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- protein ADP-ribosylation [IDA]
- protein poly-ADP-ribosylation [IDA]
- transcription from RNA polymerase II promoter [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Identification of Redox and Glucose-Dependent Txnip Protein Interactions.
Thioredoxin-interacting protein (Txnip) acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, ... [more]
Oxid Med Cell Longev Jul. 21, 2016; 2016();5829063 [Pubmed: 27437069]
Throughput
- Low Throughput
Additional Notes
- hits identified by BioID
Curated By
- BioGRID